什么是缓存穿透?

大量并发去访问一个数据库不存在的数据,由于缓存中没有该数据导致大量并发查询数据库,这个现象叫缓存穿透。

如何解决缓存穿透?

  1. 对请求增加校验机制
  2. 使用布隆过滤器(不存在一定不存在,存在不一定存在)
  3. 缓存空值或特殊值(简单但容易缓存大量无用数据)

什么是缓存雪崩?

缓存雪崩是缓存中大量拥有相同的过期时间的key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。

如何解决缓存雪崩?

  1. 使用同步锁控制查询数据库的线程
  2. 对同一类型信息的key设置不同的过期时间
  3. 使用缓存预热机制提前将数据存入缓存

什么是缓存击穿?

缓存击穿是指大量并发访问同一个热点数据,当热点数据失效后同时去请求数据库,瞬间耗尽数据库资源,导致数据库无法使用。

如何解决缓存击穿?

  1. 使用同步锁控制查询数据库的线程
  2. 设置key永不过期

什么是延时双删?

延迟双删,如果是写操作,我们先把缓存中的数据删除,然后更新数据库,最后再延时删除缓存中的数据(避免脏数据,延时的目的是避免数据库的主从模式,从数据库还未同步数据的情况)。其中,这个延时多久不太好确定。在延时的过程中,可能会出现脏数据,并不能保证强一致性。

redis做为缓存,mysql的数据如何与redis进行同步呢?(双写一致性)

我们可以采用的阿里的Canal组件实现数据同步:不需要更改业务代码,只需部署一个Canal服务。Canal服务把自己伪装成mysql的一个从节点。当mysql数据更新以后,Canal会读取binlog数据,然后再通过Canal的客户端获取到数据,并更新缓存即可。

redis做为缓存,数据的持久化是怎么做的?

在Redis中提供了RDB(Redis Database Backup File)和AOF(Append Only File)两种数据持久化的方式,RDB是一个快照文件。它是把redis内存存储的数据写到磁盘上。当redis实例宕机恢复数据的时候,可以从RDB的快照文件中恢复数据。AOF的含义是追加文件。当redis执行写命令的时候,都会存储到这个文件中。当redis实例宕机恢复数据的时候,会从这个文件中再次执行一遍命令来恢复数据。

这两种方式,哪种恢复的比较快呢?

RDB因为是二进制文件,保存时体积也比较小,所以它恢复得比较快。但它有可能会丢数据。我们通常在项目中也会使用AOF来恢复数据。虽然AOF恢复的速度慢一些,但它丢数据的风险要小很多。在AOF文件中可以设置刷盘策略。我们当时设置的就是每秒批量写入一次命令。

Redis的数据过期策略有哪些?

redis中提供了两种数据过期删除策略。

  1. 惰性删除。在设置该key过期时间后,我们不去管它。当需要该key时,我们检查其是否过期。如果过期,我们就删掉它;反之,返回该key。
  2. 是定期删除。就是说,每隔一段时间,我们就对一些key进行检查,并删除里面过期的key,定期清理有两种模式

Note

(1)SLOW模式,是定时任务,执行频率默认为10hz,每次不超过25ms,可以通过修改配置文件redis.conf的hz选项来调整这个次数
(2)FAST模式,执行频率不固定,每次事件循环会尝试执行,但两次间隔不低于2ms,每次耗时不超过1ms。Redis的过期删除策略是:惰性删除 + 定期删除两种策略配合使用。

Redis的数据淘汰策略有哪些?

redis中提供了很多种,默认是noeviction,不删除任何数据,内部不足时直接报错。这个可以在redis的配置文件中进行设置。里面有两个非常重要的概念:一个是LRU,另外一个是LFU。LRU的意思就是最少最近使用。它会用当前时间减去最后一次访问时间。这个值越大,则淘汰优先级越高。LFU的意思是最少频率使用。它会统计每个key的访问频率。值越小,淘汰优先级越高。

数据库有1000万数据,Redis只能缓存20w数据。如何保证Redis中的数据都是热点数据?

可以使用allkeys-lru(挑选最近最少使用的数据淘汰)淘汰策略。那留下来的都是经常访问的热点数据。

Redis分布式锁如何实现?

在redis中提供了一个命令SETNX(SET if not exists)。由于redis是单线程的,用了这个命令之后,只能有一个客户端对某一个key设置值。在没有过期或删除key的时候,其他客户端是不能设置这个key的。

如何控制Redis实现分布式锁的有效时长呢?

我们可以采用redis的一个框架Redisson。在Redisson中需要手动加锁,并且可以控制锁的失效时间和等待时间。当锁住的一个业务还没有执行完成的时候,Redisson会引入一个看门狗机制。就是说,每隔一段时间(1/3)就检查当前业务是否还持有锁。如果持有,就增加加锁的持有时间。当业务执行完成之后,需要使用释放锁就可以了。还有一个好处就是,在高并发下,一个业务有可能会执行很快。客户1持有锁的时候,客户2来了以后并不会马上被拒绝。它会自旋不断尝试获取锁。如果客户1释放之后,客户2就可以马上持有锁,性能也得到了提升。

Redisson实现的分布式锁是可重入的吗?

是可以重入的。这样做是为了避免死锁的产生。这个重入其实在内部就是判断是否是当前线程持有的锁,如果是当前线程持有的锁就会计数,如果释放锁就会在计数上减一。在存储数据的时候采用的hash结构,大key可以按照自己的业务进行定制,其中小key是当前线程的唯一标识,value是当前线程重入的次数。

Redisson实现的分布式锁能解决主从一致性的问题吗?

这个是不能的。比如,当线程1加锁成功后,master节点数据会异步复制到slave节点,此时如果当前持有Redis锁的master节点宕机,slave节点被提升为新的master节点,假如现在来了一个线程2,再次加锁,会在新的master节点上加锁成功,这个时候就会出现两个节点同时持有一把锁的问题。
我们可以利用Redisson提供的红锁来解决这个问题,它的主要作用是,不能只在一个Redis实例上创建锁,应该是在多个Redis实例上创建锁,并且要求在大多数Redis节点上都成功创建锁,红锁中要求是Redis的节点数量要过半。这样就能避免线程1加锁成功后master节点宕机导致线程2成功加锁到新的master节点上的问题了。
但是,如果使用了红锁,因为需要同时在多个节点上都添加锁,性能就变得非常低,并且运维维护成本也非常高,所以,我们一般在项目中也不会直接使用红锁,并且官方也暂时废弃了这个红锁。

如果业务非要保证数据的强一致性,这个该怎么解决呢?

Redis本身就是支持高可用的,要做到强一致性,就非常影响性能,所以,如果有强一致性要求高的业务,建议使用ZooKeeper实现的分布式锁,它是可以保证强一致性的。

介绍一下主从同步。

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,可以搭建主从集群,实现读写分离。一般都是一主多从,主节点负责写数据,从节点负责读数据,主节点写入数据之后,需要把数据同步到从节点中。

Note

Redis中提供三种集群方案:主从复制、哨兵模式、Redis分片集群。

主从同步数据的流程

主从同步分为了两个阶段,一个是全量同步,一个是增量同步。

  1. 全量同步是指从节点第一次与主节点建立连接的时候使用全量同步,流程是这样的:
  1. 增量同步指的是,当从节点服务重启之后,数据就不一致了,所以这个时候,从节点会请求主节点同步数据,主节点还是判断不是第一次请求,不是第一次就获取从节点的offset值,然后主节点从命令日志中获取offset值之后的数据,发送给从节点进行数据同步。

怎么保证Redis的高并发高可用?

首先可以搭建主从集群,再加上使用Redis中的哨兵模式,哨兵模式可以实现主从集群的自动故障恢复,里面就包含了对主从服务的监控、自动故障恢复、通知;如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主;同时Sentinel也充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端,所以一般项目都会采用哨兵的模式来保证Redis的高并发高可用。

你们使用Redis是单点还是集群,哪种集群?

我们当时使用的是主从(1主1从)加哨兵。一般单节点不超过10G内存,如果Redis内存不足则可以给不同服务分配独立的Redis主从节点。尽量不做分片集群。因为集群维护起来比较麻烦,并且集群之间的心跳检测和数据通信会消耗大量的网络带宽,也没有办法使用Lua脚本和事务。

Redis集群脑裂,该怎么解决呢?

这个在项目中很少见,不过脑裂的问题是这样的,我们现在用的是Redis的哨兵模式集群。
有的时候由于网络等原因可能会出现脑裂的情况,就是说,由于Redis master节点和Redis slave节点和Sentinel处于不同的网络分区,使得Sentinel没有能够心跳感知到master,所以通过选举的方式提升了一个slave为master,这样就存在了两个master,就像大脑分裂了一样,这样会导致客户端还在old master那里写入数据,新节点无法同步数据,当网络恢复后,Sentinel会将old master降为slave,这时再从新master同步数据,这会导致old master中的大量数据丢失。关于解决的话,可以在Redis的配置中可以设置:第一可以设置最少的slave节点个数,比如设置至少要有一个从节点才能同步数据,第二个可以设置主从数据复制和同步的延迟时间,达不到要求就拒绝请求,就可以避免大量的数据丢失。

Redis的分片集群有什么作用?

分片集群主要解决的是海量数据存储的问题,集群中有多个master,每个master保存不同数据,并且还可以给每个master设置多个slave节点,就可以继续增大集群的高并发能力。同时每个master之间通过ping监测彼此健康状态,就类似于哨兵模式了。当客户端请求可以访问集群任意节点,最终都会被转发到正确节点。

Redis分片集群中数据是怎么存储和读取的?

Redis 集群引入了哈希槽的概念,有 16384 个哈希槽,集群中每个主节点绑定了一定范围的哈希槽范围,key通过CRC16校验后对16384取模来决定放置哪个槽,通过槽找到对应的节点进行存储。取值的逻辑是一样的。

Redis是单线程的,但是为什么还那么快?

  1. 完全基于内存的,C语言编写。
  2. 采用单线程,避免不必要的上下文切换和竞争条件。
  3. 使用多路I/O复用模型,非阻塞IO。
    例如:BGSAVE和BGREWRITEAOF都是在后台执行操作,不影响主线程的正常使用,不会产生阻塞。

解释一下I/O多路复用模型?

  1. I/O多路复用是指利用单个线程来同时监听多个Socket,并且在某个Socket可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。目前的I/O多路复用都是采用的epoll模式实现,它会在通知用户进程Socket就绪的同时,把已就绪的Socket写入用户空间,不需要挨个遍历Socket来判断是否就绪,提升了性能。
  2. 其中Redis的网络模型就是使用I/O多路复用结合事件的处理器来应对多个Socket请求,比如,提供了连接应答处理器、命令回复处理器,命令请求处理器;
  3. 在Redis6.0之后,为了提升更好的性能,在命令回复处理器使用了多线程来处理回复事件,在命令请求处理器中,将命令的转换使用了多线程,增加命令转换速度,在命令执行的时候,依然是单线程